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A general equation has been derived for the threshold pressure of infiltration of liquids into
porous solids. From this equation all the known equations for the threshold pressure can
be obtained, using different assumptions on the morphology of the porous solid and on the
way how the liquid infiltrates the solid. Particularly, the Young-Laplace equation, the
Carman-equation, and the modification of the Carman equation, suggested by White and
later by Mortensen and Cornie have been reproduced as particular cases of the general
equation. A new particular solution of this general equation is also suggested, taking into
account that the original solid/gas interface inside the porous body is not fully replaced by
the solid/liquid interface during infiltration, especially for the case of non-wetting liquids.
The new, general equation consists of three semi-empirical parameters, which should be
found experimentally for a given type of morphology of the porous solid and for the given
ratio of the surface tension to the density of the infiltrating liquid metal. The new equation
provides a value of the threshold contact angle to be between 65.5◦ and 90◦, depending on
the morphology of the porous solid. Consequently, the threshold pressure appears to be an
asymmetrical function of the contact angle. Based on the new equation, the practical
constancy of the threshold pressure is predicted in the interval of the contact angles
between 120◦ and 180◦. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
For the infiltration of non-wetting liquids into porous
solids an external pressure is required, which should be
above threshold pressure, (Pth) for successful infiltra-
tion.

The threshold pressure is a complex function of the
morphology of the porous solid, physical properties of
the infiltrating liquid, and the contact angle between the
liquid and the solid. The threshold pressure is in fact the
negative of the so-called capillary pressure. The sim-
plest model for the capillary (threshold) pressure, valid
for cylindrical capillaries, is known since the works of
Young and Laplace (see [1]).

Further, Carman [2] in 1941 modified the Young-
Laplace equation for porous solid with random mor-
phology and a perfectly wetting fluid. The modified
equation included the average porosity, particles size
and particle shape factor. This model was found very
useful, but was limited in its application due to the zero
contact angle. Therefore, the Carman model was ex-
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trapolated to the case of non-perfectly wetting liquids
by White [3] in 1982 and by Mortensen and Cornie [4,
5] in 1987–1990. The result of such a derivation appears
to be the Carman equation, multiplied by the cosine of
the contact angle.

According to all the above models, the threshold
pressure is a symmetrical function of the cosine of the
contact angle, around the value of � = 90◦. The value
of 90◦ can be called the ‘threshold contact angle’, below
which spontaneous infiltration occurs.

The extended Carman equation was applied for the
last 15–20 years in many papers for the interpretation
of the experimental results [6–15]. This equation was
even used to estimate the contact angle in different liq-
uid metal/solid ceramic systems [16–20], but the results
were usually different from the “real” contact angle,
determined from the sessile drop experiments. In lit-
erature there are some experiments [8, 21, 22] where
the threshold contact angle was found below 90◦. It
means that the threshold pressure in reality is not a
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symmetrical function of the contact angle, and so the
Carman equation, extended in [3–5] should be further
modified.

There have been a number of theoretical papers of
these and other authors [23–26], predicting that the
threshold contact angle is below 90◦. The goal of the
present work is to extend the Carman equation for a
random porous solid structure, taking into account that
the original solid/gas interface is not fully replaced by
the solid/liquid interface during infiltration, especially
for non-wetting systems. It will turn out that the result-
ing threshold contact angle appears to be below 90◦ and
the threshold pressure appears to be an asymmetrical
function of the contact angle.

2. The general equation of the capillary
pressure

Let us imagine a solid particle of any shape, situated at
the liquid/gas interface, being immersed partly in the
liquid. The interfacial force, acting on this particle in
the direction, perpendicular to the liquid/gas interface,
was recently derived as follows [27, 28]:

F = σ ·
(

d Asl

dh
· cos � − d Alg

dh

)
(1)

where F is the force (N ), σ is the surface tension of
the liquid (N/m), Asl is the solid/liquid interface area
(m2), Alg is the liquid/gas interface area (m2), � is the
contact angle of the liquid on the solid (degree) and h is
the path, along which the particle travels perpendicular
to the liquid/gas interface, from outside towards inside
of the bulk liquid. When a particle is situated on the top
of a liquid phase, the interfacial force will be pulling
the particle into the liquid if F > 0, or pushing it out,
when F < 0. On the other hand, if the particle is fixed in
the space, the interfacial force will be pulling the liquid
on its surface when F > 0, or will be pushing it away
from it, when F < 0. In this latter case, Asl and Alg are
considered to be the total solid/liquid and liquid/gas
interfacial areas inside the porous body.

When the interfacial force is divided by Aplane, the
plane projection of the total area of the liquid/gas infil-
tration front (perpendicular to the infiltration direction),
the capillary pressure (Pc) is obtained, acting in the di-
rection of the infiltration:

Pc = σ

Aplane
·
(

d Asl

dh
· cos � − d Alg

dh

)
(2)

The threshold pressure of infiltration by definition
equals the capillary pressure, taken with a negative sign:
Pth = − Pc.

3. The capillary pressure for the cylindrical
capillary

Let us imagine a large amount of a liquid with a fixed,
cylindrical capillary of inner radius Rc, partially im-
mersed into it and situated perpendicularly to the liq-
uid/gas interface with the liquid, covering an inner wall

of the capillary with height h. Let us consider the liquid
moving slowly up along the capillary, with no distor-
tion of the shape of the infiltration front. Then, the in-
terfacial areas can be calculated as: Asl = 2Rcπh and
Alg = k R2

cπ (k depends on �), and the plane projection
of the infiltration front will be: Aplane = R2

c π . Substi-
tuting these expressions into Equation 2, the following
equation is obtained for the capillary pressure:

Pc = 2

Rc
· σ · cos � (3)

Equation 3 is the well-known Young-Laplace equa-
tion. As follows from Equation 3, Pc > 0, i.e. the capil-
lary pressure will be pulling the liquid into the capillary,
if � < 90◦. Thus, the threshold contact angle of infil-
tration, according to the capillary model is 90◦. From
Equation 3 one can also see that the capillary (and the
threshold) pressure is a symmetrical function of the co-
sine of the contact angle.

4. The capillary pressure for a perfectly
wetting liquid, infiltrating into a porous
solid of random microstructure

Let us consider a porous solid with a total cross sec-
tional area A (parallel to the liquid/gas interface), with a
random microstructure and with an average porosity ε.
For simplicity, let us imagine that the infiltration front
is macroscopically flat. Let us consider a moment of
penetration, when the liquid is infiltrated into the solid
at a height h. Then, the liquid/gas interface area will
have a constant value, i.e. Alg,0 = εA = const.

In order to express the solid/gas interface area, let
us introduce S, as a specific surface area of the solid
particles. The unit of S is m2/m3 = m−1, i.e. the surface
area of the average particle, available for an infiltrating
liquid, divided by the volume of the average particle.
For a spherical particle of radius R: S = 3/R, while for
a long cylindrical fiber of radius R: S = 2/R (neglecting
the end correction).

Now, let us consider a volume of Ah of the porous
body before infiltration. The sub-volume Ah(1-ε) will
equal the volume of the solid phase inside this porous
solid. Then, the total surface area of all the particles
can be obtained by multiplying this sub-volume by the
specific surface area of the particles: Asg = Ah(1 −
ε)S. When the infiltrating liquid of perfect wettability
(with zero contact angle) infiltrates this porous body,
all the initial solid/gas interface will be replaced by the
solid/liquid interface, therefore Asl,0 = Asg = Ah(1-
ε)S. The average plane projection area can be obtained
as: Aplane,0 = Aε.

Substituting these geometrical expressions into
Equation 2, taking into account cos � = 1, the follow-
ing equation can be obtained:

Pc,0 = S · 1 − ε

ε
· σ (4)

Equation 4 is equivalent to the Carman’s Equa-
tion [2]. It should be mentioned that Carman did not
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actually derive the capillary pressure, he rather derived
the equilibrium height of infiltration [2]. However, our
Equation 4 follows from his equation in a straightfor-
ward way.

5. A simple extension of the Carman’s
equation to non-perfectly wetting liquids

In the first approximation, for the case of non-
perfectly wetting liquids (� > 0◦) the same geomet-
rical equations can be taken valid: Asl = Ah(1-ε)S,
Alg = Aε = constant, Aplane = Aε. Substituting these
expressions into Equation 2 for cos� < 1, the following
equation can be obtained:

Pc = S · 1 − ε

ε
· σ · cos � = Pc,0 · cos � (5)

Equation 5 is identical with the equation, derived
by White [3] and by Mortensen and Cornie [4, 5].
Equation 5 predicts the threshold contact angle being
equal to 90◦ and the capillary (and threshold) pressure
is a symmetrical function of the contact angle. Thus,
these conclusions [3–5] are identical with the conclu-
sions from the classical Young-Laplace equation, the
only difference being that the geometrical coefficient
2/Rc in Equation 3 is replaced by S(1-ε)/ε in Equa-
tion 5.

6. An improved extension of the Carman’s
equation to non-perfectly wetting liquids

According to the derivation of Equation 5, the total ini-
tial solid/gas interface within a porous body is assumed
to be replaced by the solid/liquid interface during in-
filtration. In other words, the infiltration is presumed
to proceed without porosity formation, even for non-
wetting liquids, independent of the morphology of the
porous solid body. However, a large number of exper-
imental evidence exists for proving the opposite: non-
perfectly wetting, and especially non-wetting liquids
will not be able to infiltrate all the free space in porous
solids. These liquids will leave some porosity in the
porous body, even after the bulk infiltration is com-
pleted [29–31].

In the present paper, a general equation will be de-
rived, taking into account this effect, by introducing
some semi-empirical parameters.

6.1. Extension of the Carman’s equation to
perfectly non-wetting liquids

For a perfectly non-wetting liquid (� = 180◦), the final
solid/liquid interface (Asl,180) will be lower than the
initial solid/gas interface (Asg) in the porous body, as the
liquid will not be able to penetrate all the pores. Let us
define the semi-empirical coefficient k1 (0 < k1 < 1) as
the ratio of Asl,180 to Asg. Then, the following equation
can be written:

Asl,180 = k1 · A · h · (1 − ε) · S (6a)

If the liquid is not in full contact with the solid wall
of the porous body, the liquid/gas interfacial area will
be higher compared to the perfectly wetting case. The
liquid/gas interface area can be divided into two parts:
parallel and perpendicular to the infiltration direction
h. Parallel to the infiltration direction, the liquid/gas
interface area will be some k2-part of the non-wetted
solid/gas interface area (with 0 < k2 < 1). Parameter
k2 < 1 (when k1 < 1), as the infiltrating liquid tends to
minimize its free surface area, and thus it will take a
shape of distorted, curved cylinders (with possible in-
terlinks between them). Perpendicular to the infiltration
direction, the liquid/gas interface area will remain con-
stant as an average over the large area A. Then, the
liquid/gas interface area can be written as:

Alg,180 = k2 · (1 − k1) · A · h · (1 − ε) · S + const (6b)

Let us also modify the plane projection of infiltra-
tion front (perpendicular to the infiltration direction) by
the semi-empirical coefficient k3 (0 < k3 < 1). Then, the
plane projection of the infiltration front can be written
as:

Aplane,180 = k3 · A · ε (6c)

Now, let us substitute Equations (6a–6c) into
Equation 2. After re-arrangements, the following equa-
tion is obtained:

Pc,180 = −S · 1 − ε

ε
· σ · k1 + k2 − k1 · k2

k3

= −Pc,0 · k1 + k2 − k1 · k2

k3
(7)

As follows from Equation 7, generally Pc,180 �= Pc,0,
and thus the capillary (and the threshold) pressure gen-
erally will be an asymmetrical function of the contact
angle. The condition of symmetry at the two ends of
the Pc − cos � diagram will be kept only, if k3 = k3∗
(see curve B of Fig. 1), where k3∗ = k1 + k2 − k1k2,
what is generally not the case.

Figure 1 Dependence of the function -f(cos�) (being proportional to the
threshold pressure) on contact angle, compared to the − cos(�) function.
Parameters: k1 = 0.1, k2 = 0.5 (for curves A, B and C), k3 = 0.8 (curve
A), k3 = k3* = 0.55 (curve B) and k3 = 0.3 (curve C).
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6.2. Extension of the Carman’s equation to
liquids of any wettability

Let us interpolate between functions Pc,0 and Pc,180, to
obtain the general function Pc,�, being approximately
valid at any contact angle. For that, the interfacial areas
Asl, Alg and Aplane should be first defined as function
of the contact angle.

In the first approximation, from comparison of Asl
for the two boundary cases, the following equation can
be written:

Asl,� = 1

2
·[(1 + k1) + (1 − k1) · cos �]·A·h ·(1−ε)·S

(8a)
In Equation 8a the semi-empirical coefficient k1 was

interpolated from 1 (valid for � = 0◦) till its minimum
value of k1 (valid for � = 180◦) by a simplest linear
function of the cosine of the contact angle. The value of
the liquid/gas interface area can be written analogously,
from Equation 6b:

Alg,� = k2 ·
{

1 − 1

2
· [(1 + k1) + (1 − k1) · cos �]

}

· A · h · (1 − ε) · S + const (8b)

For the calculation of the plane projection of the in-
filtration front, the dependence of the semi-empirical
parameter k3 on the contact angle will be described by
a similar function, as it was done for k1. Then, one can
obtain:

Aplane,� = 1

2
· [1 + k3 + (1 − k3) · cos �] · A · ε (8c)

Substituting Equations (8a–c) into Equation 2 the
following equation is obtained:

Pc,� = S · 1 − ε

ε
·σ · f (cos �) = Pc,0 · f (cos �) (9a)

where

f (cos �)

= (1 + k1 + k2 − k1 · k2) · cos � + (1 − k1) · (cos2 � − k2)

(1 + k3) + (1 − k3) · cos �

(9b)

From comparison of Equations 4, 7, 9a, and b one
can see that the function Pc,� reduces to Pc,0 at � = 0◦
and to Pc,180 at � = 180◦.

6.3. The final equation for threshold
pressure and its analysis

Finally, the threshold pressure can be written as the
negative of Equation 9a:

Pth = −S · 1 − ε

ε
· σ · f (cos �) (10)

As follows from Equation (10), the threshold pres-
sure is proportional to −f(cos�) with all other param-
eters kept constant. The function −f(cos�) is plotted
against the contact angle in Fig.1, for three particular
sets of parameters. One can see that this function is in-
deed different from the classical − cos � function, even
when k3 = k3∗ (see Fig. 1.case B.).

One can also see from Fig. 1 that the threshold con-
tact angle (i.e. the contact angle at which the − f (cos �)
function crosses zero) is significantly lower than 90◦.
The equation for the threshold contact angle can be ob-
tained by making Equation 9b equal 0. It follows that
the threshold contact angle will be a complex function
of only 2 parameters: k1 and k2 (see Fig. 2). The min-
imum possible value of the threshold contact angle is
65.5◦ (corresponding to k1 = 0 and k2 = 1). The max-
imum possible value of the threshold contact angle is
90◦, corresponding to k1 = 1. A realistic value of the
threshold contact angle is around 75◦, corresponding
to k1 = 0.1 and k2 = 0.5. A similar value (between 70◦
and 80◦) was obtained experimentally by Yang et al.
[8, 21].

For large (close to 1) values of parameter k3 and low
(close to zero) values of parameter k1 the threshold pres-
sure becomes almost independent of the contact angle
in a relatively wide contact angle interval below 180◦
(see Fig. 1.case A). Let us introduce a variable �const,
with a meaning that f(cos�const) = 0.9f(cos180◦). It
means, that if the threshold pressure is measured with
an accuracy of ±5%, the threshold pressure seems to
be independent of the contact angle in the interval be-
tween �const and 180◦. The dependence of the �const
value on parameter k3 (at fixed values of k1 and k2) is
shown in Fig. 3. One can see that �const has its lowest
value (120◦ for k1 = 0.1 and k2 = 0.5) at k3 = 1. Thus, it
is quite realistic to get an approximately constant value
of the threshold pressure in the interval of the contact

Figure 2 Dependence of the threshold contact angle on parameter k1 as
function of the value of parameter k2 (numbers are given on the curves).

Figure 3 The dependence of parameter �const on parameter k3 at
k1 = 0.1 and at k2 = 0.5.
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angles between 120◦ and 180◦. This theoretical predic-
tion is confirmed by some experimental results [11, 13,
14, 18]. Garcia-Cordovilla et al. found that the thresh-
old pressure can be described by a joint semi-empirical
graph for different solid materials, infiltrated by the
same liquid, indicating that the role of the contact an-
gle was negligible for the non-wetting systems, studied
by them [11, 14, 18]. Candan, Atkinson and Jones [13]
even concluded that for different non-wetting systems
studied by them experimentally, it is most reasonable
to use � = 180◦ if the results are interpreted by Equa-
tion 5, rather than using different contact angles, mea-
sured in independent experiments.

In order to find the values of parameters k1, k2 and
k3, further theoretical and experimental work is needed.
In this paper let us only predict that all the three semi-
empirical parameters k1, k2 and k3 will be functions
of the morphology of the porous solid and the physi-
cal properties of the liquid metal, probably through the
dimensionless quantity σS2/gρ. Before these relation-
ships are established, the present Authors suggest the
following average values to be used: k1 = 0.1, k2 = 0.5,
k3 = 0.8 (see Fig. 1, curve A).

7. Conclusions
A general expression for the capillary pressure of infil-
tration has been derived (Equation 2). The well-known
equations of Young-Laplace (Equation 3), of Carman
(Equation 4) and of White and of Mortensen-Cornie
(Equation 5) are all particular cases of this equation,
corresponding to different morphologies of the porous
solid and to the way the infiltrating liquid behaves. In
the present paper the new expression was obtained, tak-
ing into account that non-perfectly wetting liquids will
not be able to infiltrate porous solids without remain-
ing porosity (Equations 9a and b). As demonstrated in
Fig. 1, this new relationship provides a new functional
dependence of the threshold pressure of infiltration on
the contact angle, compared to the classical relation-
ships, being proportional to the cosine of the contact
angle. As a consequence, the classical Carman equation
and its modified version by White and by Mortensen
and Cornie should be used to estimate the contact an-
gle in the given liquid/solid system with a special care.
Further experimental and theoretical work is needed
to estimate the three semi-empirical parameters of this
model as function of the morphology of the porous body
and the properties of the liquid.
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